An ILU Smoother for the Incompressible Navier-Stokes Equations in General Coordinates
نویسندگان
چکیده
ILU smoothers are good smoothers for linear multigrid methods. In this paper, a new ILU smoother for the incompressible Navier-Stokes equations, called CILU (Collective ILU), is designed, based on r-transformations. Existing ILU decompositions factorize the matrix with real elements. In CILU the elements of the matrix that is factorized are submatrices, corresponding to the set of physical variables. A multigrid algorithm using CILU as smoother is investigated. Average reduction factors and limiting reduction factors are measured to explore the performance of the algorithm. The results show that CILU is a good smoother.
منابع مشابه
Solution of the Incompressible Navier-Stokes Equations in General Coordinates by Krylov Subspace and Multigrid Methods
In this paper three iterative methods are studied: preconditioned GMRES with ILU preconditioning, GMRESR with multigrid as inner loop and multigrid for the solution of the incompressible Navier-Stokes equations in general coordinates. Robustness and e ciency of the three methods are investigated and compared. Numerical results show that the second method is very promising.
متن کاملTurbulent Flow over Cars
In this paper the flow behaviour over a number of car bodies is studied. For this purpose the unsteady 2-D incompressible Navier-Stokes equations have been applied. After averaging and nondimensionalizing the equations, the system of equations has been transformed from the Cartesian (x-y) coordinates to a body fitted generalized (-) coordinate. As the flow is incompressible, the density in the ...
متن کاملPreconditioners for the Steady Incompressible Navier-Stokes Problem
In this paper we discuss preconditioners for the incompressible Navier-Stokes equations. In combination with Krylov subspace methods, they give a fast convergence for the solution of the Navier -Stokes equations. With the help of numerical experiments, we report some new findings regarding the convergence of these preconditioners. Besides that, a renumbering scheme for direct solvers and ILU pr...
متن کاملNumerical Analysis and Scientific Computing Preprint Seria ILU preconditioners for non-symmetric saddle point matrices with application to the incompressible Navier-Stokes equations
Motivated by the numerical solution of the linearized incompressible Navier–Stokes equations, we study threshold incomplete LU factorizations for non-symmetric saddle point matrices. The resulting preconditioners are used to accelerate the convergence of a Krylov subspace method applied to finite element discretizations of fluid dynamics problems in three space dimensions. The paper presents an...
متن کاملILU Preconditioners for Nonsymmetric Saddle-Point Matrices with Application to the Incompressible Navier-Stokes Equations
Motivated by the numerical solution of the linearized incompressible Navier–Stokes equations, we study threshold incomplete LU factorizations for nonsymmetric saddle-point matrices. The resulting preconditioners are used to accelerate the convergence of a Krylov subspace method applied to finite element discretizations of fluid dynamics problems in three space dimensions. The paper presents and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1992